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Abstract: Commercial relational database management systems (RDBMSs) generally provide querying capabilities 

for text attributes that incorporate state-of-the-art information retrieval (IR) relevance ranking strategies, but this 

search functionality requires that queries specify the exact column or columns against which a given list of 

keywords is to be matched. We describe a novel approach for information extraction in which extraction needs are 

expressed in the form of database queries, which are evaluated and optimized by database systems. Using database 

queries for information extraction enables generic extraction and minimizes reprocessing of data by performing 

incremental extraction to identify which part of the data is affected by the change of components or goals. In this we 

will introduce the natural language parser named as Stanford Parser. The SD representation has seen considerable 

use within the biomedical text mining community. It has been used to give a task relevant evaluation scheme for 

parsers and as a representation for relation extraction  
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I. INTRODUCTION 

 

Commercial RDBMSs generally provide 

querying capabilities for text attributes that 

incorporate state-of-theart information retrieval (IR) 

relevance ranking strategies. This search 

functionality requires that queries specify the exact 

column or columns against which a given list of 

keywords is to be matched. For example, a query: 

SELECT * FROM Complaints C WHERE 

CONTAINS (C.comments, ’disk crash’, 1) > 0 

ORDER BY score(1) DESC on Oracle 9.1 1 returns 

the rows of the Complaints table that match the 

keyword query [disk crash], sorted by their score as 

determined by an IR relevance-ranking algorithm. 

Intuitively, the score of a tuple measures how well its 

comments field matches the query [disk crash]. The 

requirement that queries specify the exact columns to 

match can be cumbersome and inflexible from a user 

perspective: good answers to a keyword query might 

need to be “assembled” –in perhaps unforeseen 

ways– by joining tuples from multiple relations: IE is  

 

 

 

 

typically seen as a one-time process for the 

extraction of a particular kind of relationships of 

interest from a document collection. IE is usually 

deployed as a pipeline of special-purpose programs, 

which include sentence splitters, tokenizes, named 

entity recognizers, shallow or deep syntactic parsers, 

and extraction based on a collection of patterns. 

 

A key contribution of this paper is the 

incorporation of IR-style relevance ranking of tuple 

trees into our query processing framework. In 

particular, our scheme fully exploits single-attribute 

relevance-ranking results if the RDBMS of choice 

has text-indexing capabilities (e.g., as is the case for 

Oracle 9.1, as discussed above). By leveraging state-

of-theart IR relevance-ranking functionality already 

present in modern RDBMSs, we are able to produce 

high quality results for free-form keyword queries. 

For example, a query [disk crash on a netvista] would 

still match the comments attribute of the first 
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Complaints tuple above with a high relevance score, 

after word stemming (so that “crash” matches 

“crashed”) and stop-word elimination (so that the 

absence of “a” is not weighed too highly). Our 

scheme relies on the IR engines of RDBMSs to 

perform such relevance-ranking at the attribute level, 

and handles both AND and OR semantics. 

Unfortunately, existing query-processing 

strategies for keyword search over RDBMSs are 

inherently inefficient, since they attempt to capture 

all tuple trees with all query keywords. Thus these 

strategies do not exploit a crucial characteristic of IR-

style keyword search, namely that only the top 10 or 

20 most relevant matches for a keyword query –

according to some definition of “relevance”– are 

generally of interest. The second contribution of this 

paper is the presentation of efficient query processing 

techniques for our IR-style queries over RDBMSs 

that heavily exploit this observation. As we will see, 

our techniques produce the top-k matches for a query 

–for moderate values of k– in a fraction of the time 

taken by state-of-the-art strategies to compute all 

query matches. Furthermore, our techniques are 

pipelined, in the sense that execution can efficiently 

resume to compute the “next-k” matches if the user 

so desires. A natural language parser is a program 

that works out the grammatical structure of 

sentences, for instance, which groups of words go 

together (as "phrases") and which words are 

the subject or object of a verb. Probabilistic parsers 

use knowledge of language gained from hand-parsed 

sentences to try to produce the most likely analysis of 

new sentences. These statistical parsers still make 

some mistakes, but commonly work rather well. 

 

II. RELATED WORK 

 

In database research, there has been some 

work on ranked retrieval from a database. The early 

work considered vague/imprecise similarity-based 

querying of databases. The problem of integrating 

databases and information retrieval systems has been 

attempted in several works. Information retrieval 

based approaches have been extended to XML 

retrieval. Keyword-query based retrieval systems 

over databases have been proposed in various papers. 

SQL extensions in which users can specify ranking 

functions via soft constraints in the form of 

preferences. The distinguishing aspect of our work 

from the above is that we espouse automatic 

Extraction of PIR-based ranking functions through 

data and workload statistics. 

DBXplorer and DISCOVER exploit the 

RDBMS schema, which leads to relatively efficient 

algorithms for answering keyword queries because 

the structural constraints expressed in the schema are 

helpful for query processing. These two systems rely 

on a similar architecture, Unlike DBXplorer and 

DISCOVER, our techniques are not limited to 

Boolean-AND semantics for queries, and we can 

handle queries with both AND and OR semantics. In 

contrast, DBXplorer and DISCOVER (as well as 

BANKS) require that all query keywords appear in 

the tree of nodes or tuples that are returned as the 

answer to a query. Furthermore, we employ ranking 

techniques developed by the IR community, instead 

of ranking answers solely based on the size of the 

result as in DBXplorer and DISCOVER. Also, our 

techniques improve on previous work in terms of 

efficiency by exploiting the fact that free-form 

keyword queries can generally be answered with just 

the few most relevant matches. Our work then 

produces the “top-k” matches for a query fast, for 

moderate values of k.  

The lexicalized probabilistic parser implements a 

factored product model, with separate PCFG phrase 

structure and lexical dependency experts, whose 

preferences are combined by efficient exact 

inference, using an A* algorithm. Or the software can 

be used simply as an accurate unlexicalized 

stochastic context-free grammar parser. Either of 

these yields a good performance statistical parsing 

system. A GUI is provided for viewing the phrase 

structure tree output of the parser. 

The architecture of our query processing system 

relies whenever possible on existing, unmodified 

RDBMS components. Specifically, our architecture 

(Figure 3) consists of the following modules: 
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A) IR Engine 

 

As discussed, modern RDBMSs include IR-

style text indexing functionality at the attribute level. 

The IR Engine module of our architecture exploits 

this functionality to identify all database tuples that 

have a non-zero score for a given query. The IR 

Engine relies on the IR Index, which is an inverted 

index that associates each keyword that appears in 

the database with a list of occurrences of the 

keyword; each occurrence of a keyword is recorded 

as a tuple attribute pair. Our implementation uses 

Oracle Text, which keeps a separate index for each 

relation attribute. We combine these individual 

indexes to build the IR Index. When a queryQ arrives, 

the IR Engine uses the IR Index to extract from each 

relation R the tuple set RQ = {t ∈  R | Score(t,Q) > 0}, 

which consists of the tuples of R with a non-zero 

score for Q. The tuples t in the tuple sets are ranked 

in descending order of Score(t,Q), as required by 

the top-k query processing algorithms  

 

 
Figure 1: Architecture of our query processing 

system. 

 

B) Candidate Network Generator 

 

The next module in the pipeline is the 

Candidate Network (CN) Generator, which receives 

as input the non-emptytuple sets from the IR Engine, 

together with the database schema and a parameterM 

that we explain below. The key role of this module is 

to produce CNs, which are join expressions to be 

used to create joining trees of tuples that will be 

considered as potential answers to the query. 

Specifically, a CN is a join expression that involves 

tuple sets plus perhaps additional “base” database 

relations. We refer to a base relationR that appears in 

a CN as a free tuple set and denote it as R{}. 

Intuitively, the free tuple sets in a CN do not have 

occurrences of the query keywords, but help 

“connect” (via foreign-key joins) the (non-free) tuple 

sets that do have non-zero scores for the query. Each 

result T of a CN is thus a potential result of the 

keyword query. 

We say that a joining tree of tuples T 

belongs to a CN C (T є C) if there is a tree 

isomorphism mapping h from the tuples of T to the 

tuple sets of C. For example, in Figure 2, (c1 ← p1) 

∈  (Complaints Q ← Products (Q). The input 

parameter M bounds the size (in number of tuple sets, 

free or non-free) of the CNs that this module 

produces. The notion of CN was introduced in 

DBXplorer and DISCOVER. As discussed, 

DISCOVER and DBXplorer require that each joining 

tree of tuples in the query answer contain all query 

keywords. To produce all answers for a query with 

this AND semantics, these systems create multiple 

tuple sets for each database relation. Specifically, a 

separate tuple set is created for each combination of 

keywords in Q and each relation. This generally leads 

to a number of CNs that is exponential in the query 

size, which makes query execution prohibitively 

expensive for queries of more than a very small 

number of keywords or for values of M greater than 4 

or so. 

In contrast, we only create a single tuple set 

RQ for each relation R, as specified above. For 

queries with AND semantics, a post processing step 

checks that we only return tuple trees containing all 

query keywords. As we will see, this characteristic of 
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our system results in significantly faster executions, 

which in turn allows us to handle larger queries and 

also consider larger CNs. The CN generation 

algorithm is based on that of the DISCOVER system, 

and is not explained here in full detail due to lack of 

space. Conceptually, we first create the tuple set 

graph from the database schema graph and the tuple 

sets returned by the IR Engine module.  We 

progressively expand each CN s є S by adding a tuple 

set adjacent to s in the tuple set graph. We consider s 

to be a CN and hence part of the output of this 

module if it satisfies the following properties: 

1. The number of non-free tuple sets in s does not 

exceed the number of query keywords m: This 

constraint guarantees that we generate a minimum 

number of CNs while not missing any result that 

contains all the keywords, which is crucial for 

Boolean-AND semantics. That is, for every result T 

that contains every keyword exactly once, a CN C 

exists such that T є C.  

2. No leaf tuple sets of s are free: This constraint 

ensures CN “minimality 3. s does not contain a 

construct of the form R → S ← R: If such a construct 

existed, every resulting joining tree of tuples would 

contain the same tuple more than once.  

The size of a CN is its number of tuple sets. 

All CNs of size 3 or lower for the query [Maxtor 

Netvista] are shown in Figure 3. 

 

C) Execution Engine 

 

The final module in the pipeline is the 

Execution Engine, which receives as input a set of 

CNs together with the non-free tuple sets. The 

Execution Engine contacts the RDBMS’s query 

execution engine repeatedly to identify the top-k 

query results.  The Execution Engine module is the 

most challenging to implement efficiently. 

 

 

D) Stanford Architecture 

This package is a Java implementation of 

probabilistic natural language parsers, both highly 

optimized PCFG and lexicalized dependency parsers, 

and a lexicalized PCFG parser. The original version 

of this parser was mainly written by Dan Klein, with 

support code and linguistic grammar development by 

Christopher Manning. 

 

Figure 2: Data Representation in Stanford 

process. 

 Extensive additional work 

(internationalization and language-specific modeling, 

flexible input/output, grammar compaction, lattice 

parsing, k-best parsing, typed dependencies output, 

user support, etc.) has been done by Roger Levy, 

Christopher Manning, Teg Grenager, Galen Andrew, 

Marie-Catherine de Marneffe, Bill MacCartney, 

Anna Rafferty, Spence Green, Huihsin Tseng, Pi-

Chuan Chang, Wolfgang Maier, and Jenny Finkel. 

III. PARSE TREE QUERY LANGUAGE 

However, the inability of expressing immediate 

following siblings and immediate-preceding siblings 

in this standard XML query languages. PTQL is an 

extension of the linguistic query Language that 

allows queries to be performed not only on the 

constituent trees but also the syntactic links between 

words on linkages. A PTQL query is made up of four 

components: 

1. Tree patterns, 

2. Link conditions, 

3. Proximity conditions, and 

4. Return expression. 

 

A tree pattern describes the hierarchical structure and 

the horizontal order between the nodes of the parse 

tree. A link condition describes the linking 
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requirements between nodes, while a proximity 

condition is to find words that are within a specified 

number of words. A return expression defines what to 

return. 

 

IV. STANFORD DEPENDECIES 

 

Dependency is a one-to-one correspondence: for 

every element (e.g. word or morph) in the 

sentence, there is exactly one node in the 

structure of that sentence that corresponds to that 

element.  

 
 

Figure 3: Dependency naturals in 

representation of natural parse architecture 

 

 

The result of this one-to-one correspondence is 

that dependency grammars are word (or morph) 

grammars. All that exist are the elements and the 

dependencies that connect the elements into a 

structure. This situation should be compared 

with the constituency relation of phrase structure 

grammars. 

  

 

 
 

Figure 4: Stanford accessing data tree 

construction. 

 

The dependencies are all binary relations: a 

grammatical relation holds between a governor (also 

known as a regent or a head) and a dependent. The 

grammatical relations are defined below, in 

alphabetical order according to the dependency’s 

abbreviated name (which appears in the parser 

output). The definitions make use of the Penn 

Treebank part-of-speech tags and phrasal labels. 

abbrev: abbreviation modifier An abbreviation 

modifier of an NP is a parenthesized NP that serves 

to abbreviate the NP (or to define an abbreviation). 

“The Australian Broadcasting Corporation (ABC)” 

abbrev(Corporation, ABC)acomp: adjectival 

complement An adjectival complement of a verb is 

an adjectival phrase which functions as the 

complement (like an object of the verb). 

 

 

V. PERFORMANCE RESULTS 

 

Five variants of the typed dependency representation 

are available in the dependency extraction system 

provided with the Stanford parser. The 

representations follow the same format. In the plain 

text format, a dependency is written as abbreviated 

relation name(governor, dependent) where the 

governor and the dependent are words in the sentence 

to which a number indicating the position of the word 

in the sentence is appended.1 The parser also 

provides an XML format which captures the same 

information.  

 
 

Figure 5: Stanford Dependencies results  

 

http://en.wikipedia.org/wiki/Phrase_structure_grammar
http://en.wikipedia.org/wiki/Phrase_structure_grammar
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The lexicalized probabilistic parser implements a 

factored product model, with separate PCFG phrase 

structure and lexical dependency experts, whose 

preferences are combined by efficient exact 

inference, using an A* algorithm. Or the software can 

be used simply as an accurate unlexicalized 

stochastic context-free grammar parser. Either of 

these yields a good performance statistical parsing 

system. A GUI is provided for viewing the phrase 

structure tree output of the parser. 

 

VI. CONCLUSION 

 

In this paper we presented a system for 

efficient IR-style keyword search over relational 

databases. A query in our model is simply a list of 

keywords, and does not need to specify any relation 

or attribute names. The answer to such a query 

consists of a rank of “tuple trees,” which potentially 

include tuples from multiple relations that are 

combined via joins. A natural language parser is a 

program that works out the grammatical structure of 

sentences, for instance, which groups of words go 

together (as "phrases") and which words are 

the subject or object of a verb. Probabilistic parsers 

use knowledge of language gained from hand-parsed 

sentences to try to produce the most likely analysis of 

new sentences 
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