
IJDCST @October Issue- V-1, I-6, SW-46
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

61 www.ijdcst.com

Information Extraction Based Stanford Dependencies Using

Relational Databases

M.Suryanagamani1, K.Kiran Kumar2

1Student, Nova College of Engineering and Technology for Women, Ibrahimpatnam,Krishna Dist, Andhra Pradesh, India

2 Assistant Professor, Nova College of Engineering and Technology for Women, Ibrahimpatnam,Krishna Dist, Andhra Pradesh, India

Abstract: Commercial relational database management systems (RDBMSs) generally provide querying capabilities

for text attributes that incorporate state-of-the-art information retrieval (IR) relevance ranking strategies, but this

search functionality requires that queries specify the exact column or columns against which a given list of

keywords is to be matched. We describe a novel approach for information extraction in which extraction needs are

expressed in the form of database queries, which are evaluated and optimized by database systems. Using database

queries for information extraction enables generic extraction and minimizes reprocessing of data by performing

incremental extraction to identify which part of the data is affected by the change of components or goals. In this we

will introduce the natural language parser named as Stanford Parser. The SD representation has seen considerable

use within the biomedical text mining community. It has been used to give a task relevant evaluation scheme for

parsers and as a representation for relation extraction

Keywords: keyword search, relational database, information retrieval, Text mining, query languages,

information storage and retrieval, Stanford Parser.

I. INTRODUCTION

Commercial RDBMSs generally provide

querying capabilities for text attributes that

incorporate state-of-theart information retrieval (IR)

relevance ranking strategies. This search

functionality requires that queries specify the exact

column or columns against which a given list of

keywords is to be matched. For example, a query:

SELECT * FROM Complaints C WHERE

CONTAINS (C.comments, ’disk crash’, 1) > 0

ORDER BY score(1) DESC on Oracle 9.1 1 returns

the rows of the Complaints table that match the

keyword query [disk crash], sorted by their score as

determined by an IR relevance-ranking algorithm.

Intuitively, the score of a tuple measures how well its

comments field matches the query [disk crash]. The

requirement that queries specify the exact columns to

match can be cumbersome and inflexible from a user

perspective: good answers to a keyword query might

need to be “assembled” –in perhaps unforeseen

ways– by joining tuples from multiple relations: IE is

typically seen as a one-time process for the

extraction of a particular kind of relationships of

interest from a document collection. IE is usually

deployed as a pipeline of special-purpose programs,

which include sentence splitters, tokenizes, named

entity recognizers, shallow or deep syntactic parsers,

and extraction based on a collection of patterns.

A key contribution of this paper is the

incorporation of IR-style relevance ranking of tuple

trees into our query processing framework. In

particular, our scheme fully exploits single-attribute

relevance-ranking results if the RDBMS of choice

has text-indexing capabilities (e.g., as is the case for

Oracle 9.1, as discussed above). By leveraging state-

of-theart IR relevance-ranking functionality already

present in modern RDBMSs, we are able to produce

high quality results for free-form keyword queries.

For example, a query [disk crash on a netvista] would

still match the comments attribute of the first

IJDCST @October Issue- V-1, I-6, SW-46
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

62 www.ijdcst.com

Complaints tuple above with a high relevance score,

after word stemming (so that “crash” matches

“crashed”) and stop-word elimination (so that the

absence of “a” is not weighed too highly). Our

scheme relies on the IR engines of RDBMSs to

perform such relevance-ranking at the attribute level,

and handles both AND and OR semantics.

Unfortunately, existing query-processing

strategies for keyword search over RDBMSs are

inherently inefficient, since they attempt to capture

all tuple trees with all query keywords. Thus these

strategies do not exploit a crucial characteristic of IR-

style keyword search, namely that only the top 10 or

20 most relevant matches for a keyword query –

according to some definition of “relevance”– are

generally of interest. The second contribution of this

paper is the presentation of efficient query processing

techniques for our IR-style queries over RDBMSs

that heavily exploit this observation. As we will see,

our techniques produce the top-k matches for a query

–for moderate values of k– in a fraction of the time

taken by state-of-the-art strategies to compute all

query matches. Furthermore, our techniques are

pipelined, in the sense that execution can efficiently

resume to compute the “next-k” matches if the user

so desires. A natural language parser is a program

that works out the grammatical structure of

sentences, for instance, which groups of words go

together (as "phrases") and which words are

the subject or object of a verb. Probabilistic parsers

use knowledge of language gained from hand-parsed

sentences to try to produce the most likely analysis of

new sentences. These statistical parsers still make

some mistakes, but commonly work rather well.

II. RELATED WORK

In database research, there has been some

work on ranked retrieval from a database. The early

work considered vague/imprecise similarity-based

querying of databases. The problem of integrating

databases and information retrieval systems has been

attempted in several works. Information retrieval

based approaches have been extended to XML

retrieval. Keyword-query based retrieval systems

over databases have been proposed in various papers.

SQL extensions in which users can specify ranking

functions via soft constraints in the form of

preferences. The distinguishing aspect of our work

from the above is that we espouse automatic

Extraction of PIR-based ranking functions through

data and workload statistics.

DBXplorer and DISCOVER exploit the

RDBMS schema, which leads to relatively efficient

algorithms for answering keyword queries because

the structural constraints expressed in the schema are

helpful for query processing. These two systems rely

on a similar architecture, Unlike DBXplorer and

DISCOVER, our techniques are not limited to

Boolean-AND semantics for queries, and we can

handle queries with both AND and OR semantics. In

contrast, DBXplorer and DISCOVER (as well as

BANKS) require that all query keywords appear in

the tree of nodes or tuples that are returned as the

answer to a query. Furthermore, we employ ranking

techniques developed by the IR community, instead

of ranking answers solely based on the size of the

result as in DBXplorer and DISCOVER. Also, our

techniques improve on previous work in terms of

efficiency by exploiting the fact that free-form

keyword queries can generally be answered with just

the few most relevant matches. Our work then

produces the “top-k” matches for a query fast, for

moderate values of k.

The lexicalized probabilistic parser implements a

factored product model, with separate PCFG phrase

structure and lexical dependency experts, whose

preferences are combined by efficient exact

inference, using an A* algorithm. Or the software can

be used simply as an accurate unlexicalized

stochastic context-free grammar parser. Either of

these yields a good performance statistical parsing

system. A GUI is provided for viewing the phrase

structure tree output of the parser.

The architecture of our query processing system

relies whenever possible on existing, unmodified

RDBMS components. Specifically, our architecture

(Figure 3) consists of the following modules:

IJDCST @October Issue- V-1, I-6, SW-46
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

63 www.ijdcst.com

A) IR Engine

As discussed, modern RDBMSs include IR-

style text indexing functionality at the attribute level.

The IR Engine module of our architecture exploits

this functionality to identify all database tuples that

have a non-zero score for a given query. The IR

Engine relies on the IR Index, which is an inverted

index that associates each keyword that appears in

the database with a list of occurrences of the

keyword; each occurrence of a keyword is recorded

as a tuple attribute pair. Our implementation uses

Oracle Text, which keeps a separate index for each

relation attribute. We combine these individual

indexes to build the IR Index. When a queryQ arrives,

the IR Engine uses the IR Index to extract from each

relation R the tuple set RQ = {t ∈ R | Score(t,Q) > 0},

which consists of the tuples of R with a non-zero

score for Q. The tuples t in the tuple sets are ranked

in descending order of Score(t,Q), as required by

the top-k query processing algorithms

Figure 1: Architecture of our query processing

system.

B) Candidate Network Generator

The next module in the pipeline is the

Candidate Network (CN) Generator, which receives

as input the non-emptytuple sets from the IR Engine,

together with the database schema and a parameterM

that we explain below. The key role of this module is

to produce CNs, which are join expressions to be

used to create joining trees of tuples that will be

considered as potential answers to the query.

Specifically, a CN is a join expression that involves

tuple sets plus perhaps additional “base” database

relations. We refer to a base relationR that appears in

a CN as a free tuple set and denote it as R{}.

Intuitively, the free tuple sets in a CN do not have

occurrences of the query keywords, but help

“connect” (via foreign-key joins) the (non-free) tuple

sets that do have non-zero scores for the query. Each

result T of a CN is thus a potential result of the

keyword query.

We say that a joining tree of tuples T

belongs to a CN C (T є C) if there is a tree

isomorphism mapping h from the tuples of T to the

tuple sets of C. For example, in Figure 2, (c1 ← p1)

∈ (Complaints Q ← Products (Q). The input

parameter M bounds the size (in number of tuple sets,

free or non-free) of the CNs that this module

produces. The notion of CN was introduced in

DBXplorer and DISCOVER. As discussed,

DISCOVER and DBXplorer require that each joining

tree of tuples in the query answer contain all query

keywords. To produce all answers for a query with

this AND semantics, these systems create multiple

tuple sets for each database relation. Specifically, a

separate tuple set is created for each combination of

keywords in Q and each relation. This generally leads

to a number of CNs that is exponential in the query

size, which makes query execution prohibitively

expensive for queries of more than a very small

number of keywords or for values of M greater than 4

or so.

In contrast, we only create a single tuple set

RQ for each relation R, as specified above. For

queries with AND semantics, a post processing step

checks that we only return tuple trees containing all

query keywords. As we will see, this characteristic of

IJDCST @October Issue- V-1, I-6, SW-46
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

64 www.ijdcst.com

our system results in significantly faster executions,

which in turn allows us to handle larger queries and

also consider larger CNs. The CN generation

algorithm is based on that of the DISCOVER system,

and is not explained here in full detail due to lack of

space. Conceptually, we first create the tuple set

graph from the database schema graph and the tuple

sets returned by the IR Engine module. We

progressively expand each CN s є S by adding a tuple

set adjacent to s in the tuple set graph. We consider s

to be a CN and hence part of the output of this

module if it satisfies the following properties:

1. The number of non-free tuple sets in s does not

exceed the number of query keywords m: This

constraint guarantees that we generate a minimum

number of CNs while not missing any result that

contains all the keywords, which is crucial for

Boolean-AND semantics. That is, for every result T

that contains every keyword exactly once, a CN C

exists such that T є C.

2. No leaf tuple sets of s are free: This constraint

ensures CN “minimality 3. s does not contain a

construct of the form R → S ← R: If such a construct

existed, every resulting joining tree of tuples would

contain the same tuple more than once.

The size of a CN is its number of tuple sets.

All CNs of size 3 or lower for the query [Maxtor

Netvista] are shown in Figure 3.

C) Execution Engine

The final module in the pipeline is the

Execution Engine, which receives as input a set of

CNs together with the non-free tuple sets. The

Execution Engine contacts the RDBMS’s query

execution engine repeatedly to identify the top-k

query results. The Execution Engine module is the

most challenging to implement efficiently.

D) Stanford Architecture

This package is a Java implementation of

probabilistic natural language parsers, both highly

optimized PCFG and lexicalized dependency parsers,

and a lexicalized PCFG parser. The original version

of this parser was mainly written by Dan Klein, with

support code and linguistic grammar development by

Christopher Manning.

Figure 2: Data Representation in Stanford

process.

 Extensive additional work

(internationalization and language-specific modeling,

flexible input/output, grammar compaction, lattice

parsing, k-best parsing, typed dependencies output,

user support, etc.) has been done by Roger Levy,

Christopher Manning, Teg Grenager, Galen Andrew,

Marie-Catherine de Marneffe, Bill MacCartney,

Anna Rafferty, Spence Green, Huihsin Tseng, Pi-

Chuan Chang, Wolfgang Maier, and Jenny Finkel.

III. PARSE TREE QUERY LANGUAGE

However, the inability of expressing immediate

following siblings and immediate-preceding siblings

in this standard XML query languages. PTQL is an

extension of the linguistic query Language that

allows queries to be performed not only on the

constituent trees but also the syntactic links between

words on linkages. A PTQL query is made up of four

components:

1. Tree patterns,

2. Link conditions,

3. Proximity conditions, and

4. Return expression.

A tree pattern describes the hierarchical structure and

the horizontal order between the nodes of the parse

tree. A link condition describes the linking

IJDCST @October Issue- V-1, I-6, SW-46
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

65 www.ijdcst.com

requirements between nodes, while a proximity

condition is to find words that are within a specified

number of words. A return expression defines what to

return.

IV. STANFORD DEPENDECIES

Dependency is a one-to-one correspondence: for

every element (e.g. word or morph) in the

sentence, there is exactly one node in the

structure of that sentence that corresponds to that

element.

Figure 3: Dependency naturals in

representation of natural parse architecture

The result of this one-to-one correspondence is

that dependency grammars are word (or morph)

grammars. All that exist are the elements and the

dependencies that connect the elements into a

structure. This situation should be compared

with the constituency relation of phrase structure

grammars.

Figure 4: Stanford accessing data tree

construction.

The dependencies are all binary relations: a

grammatical relation holds between a governor (also

known as a regent or a head) and a dependent. The

grammatical relations are defined below, in

alphabetical order according to the dependency’s

abbreviated name (which appears in the parser

output). The definitions make use of the Penn

Treebank part-of-speech tags and phrasal labels.

abbrev: abbreviation modifier An abbreviation

modifier of an NP is a parenthesized NP that serves

to abbreviate the NP (or to define an abbreviation).

“The Australian Broadcasting Corporation (ABC)”

abbrev(Corporation, ABC)acomp: adjectival

complement An adjectival complement of a verb is

an adjectival phrase which functions as the

complement (like an object of the verb).

V. PERFORMANCE RESULTS

Five variants of the typed dependency representation

are available in the dependency extraction system

provided with the Stanford parser. The

representations follow the same format. In the plain

text format, a dependency is written as abbreviated

relation name(governor, dependent) where the

governor and the dependent are words in the sentence

to which a number indicating the position of the word

in the sentence is appended.1 The parser also

provides an XML format which captures the same

information.

Figure 5: Stanford Dependencies results

http://en.wikipedia.org/wiki/Phrase_structure_grammar
http://en.wikipedia.org/wiki/Phrase_structure_grammar

IJDCST @October Issue- V-1, I-6, SW-46
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

66 www.ijdcst.com

The lexicalized probabilistic parser implements a

factored product model, with separate PCFG phrase

structure and lexical dependency experts, whose

preferences are combined by efficient exact

inference, using an A* algorithm. Or the software can

be used simply as an accurate unlexicalized

stochastic context-free grammar parser. Either of

these yields a good performance statistical parsing

system. A GUI is provided for viewing the phrase

structure tree output of the parser.

VI. CONCLUSION

In this paper we presented a system for

efficient IR-style keyword search over relational

databases. A query in our model is simply a list of

keywords, and does not need to specify any relation

or attribute names. The answer to such a query

consists of a rank of “tuple trees,” which potentially

include tuples from multiple relations that are

combined via joins. A natural language parser is a

program that works out the grammatical structure of

sentences, for instance, which groups of words go

together (as "phrases") and which words are

the subject or object of a verb. Probabilistic parsers

use knowledge of language gained from hand-parsed

sentences to try to produce the most likely analysis of

new sentences

VII. REFERENCES

[1] D. Ferrucci and A. Lally, “UIMA: An

Architectural Approach to Unstructured Information

Processing in the Corporate Research Environment,”

Natural Language Eng., vol. 10, nos. 3/4, pp. 327-

348, 2004.

[2] H. Cunningham, D. Maynard, K. Bontcheva, and

V. Tablan, “GATE: A Framework and Graphical

Development Environment for Robust NLP Tools

and Applications,” Proc. 40th Ann. Meeting of the

ACL, 2002.

[3] A. Doan, J.F. Naughton, R. Ramakrishnan, A.

Baid, X. Chai, F. Chen, T. Chen, E. Chu, P. DeRose,

B. Gao, C. Gokhale, J. Huang, W. Shen, and B.-Q.

Vuong, “Information Extraction Challenges in

Managing Unstructured Data,” ACM SIGMOD

Record, vol. 37, no. 4, pp. 14-20, 2008.

[4] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,

S. Vaithyanathan,and H. Zhu, “SystemT: A System

for Declarative Information Extraction,” ACM

SIGMOD Record, vol. 37, no. 4, pp. 7-13, 2009.

[5] M. Huang, S. Ding, H. Wang, and X. Zhu,

“Mining Physical Protein-Protein Interactions by

Exploiting Abundant Features,”Proc. Second

BioCreative Challenge, pp. 237-245, 2007.

[6] J. Hakenberg, C. Plake, L. Royer, H. Strobelt, U.

Leser, and M. Schroeder, “Gene Mention

Normalization and Interaction Extraction with

Context Models and Sentence Motifs,” Genome

Biology, vol. 9, Suppl 2, p. S14, 2008.s

